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Abstract -As physical and chemical properties of protein guide to 
determine quality of the protein structure, it has been used 
rigorously to distinguish native or native like structure from 
other predicted structures. In this work, by using six physical 
and chemical properties we explore the machine learning 
models and the properties are total empirical energy, secondary 
structure penalty, total surface area, pair number, residue 
length and Euclidean distance to predict the RMSD (Root Mean 
Square Deviation) of a protein structure in the absence of its 
true native state. There are total 1056 modelled decoys structure 
having 3078 native structures. The Real Coded Genetic 
Algorithm (RCGA) is used to determine feature importance and 
robustness is measured by the K-fold validation of the best 
predictive model. 
The experiments results shows that the random forest model 
outperforms the other machine learning approaches in RMSD 
prediction. This work achieved the prediction of RMSD faster 
and inexpensive. 

Keywords—Protein structure prediction, Machine learning, 
Random forest, RCGA. 

Results: The performance result shows that in the prediction of 
RMSD, the RMSE (Root Mean Square Error) is 0.48; correlation 
is 0.90; R2 is 0.82; and accuracy is 97.02% (with ± 2 error) 
respectively on the testing data. 

1 INTRODUCTION 
for carrying out several biological functions Protein 
sequences are translated into 3D tertiary forms. Prediction of 
high resolution protein structure has become one of the 
“biggest problems“ in modern biology. Physical and 
Chemical properties of amino acids and their solvent 
environment are the key determinants in folding a protein 
sequence into its unique tertiary structure. These factors 
essentially generate various types of energy contributors such 
as electrostatic, van der Waals, salvation/desolvation, which 
create folding pathways. 
ab initio approaches for structure determination employ these 
physical and chemical factors to generate a structure or an 
ensemble of structures from the sequence as plausible 
candidates for the native. In an alternative approach, called 
homology modeling, one uses experimentally known protein 
structures as templates based on sequence similarity. Because 
of the insufficient experimental data and lack of knowledge 
about the true folding path way of proteins to the native ,may 

prediction models generate low quality structures .These low 
quality structures might be look similar to high resolution 
structure having all the quality assessment criteria but in 
reality they could be  10-15 °A away from their true native 
states (Fig. 1). It would be highly desirable to have a 
predictive model, which can tell how far a structure is from 
the native in the absence of its experimental structure. 

Machine learning models have been mostly used in protein 
structure prediction such as 2D and 3D structure prediction 
(Rost and Sander, 1993; Rost et al., 1993), fold recognition 
(Cheng et al., 2005b; Kim et al., 2003), solvent accessibility 
prediction, disordered region prediction (Obradovic et al., 
2005; Cheng et al., 2005a), binding site prediction (Travers, 
1989), trans membrane helix prediction (Krogh et al., 2001), 
protein domain boundary prediction (Bryson et al., 2007), 
contact map (Fariselli et al.,2001; Baldi and Pollastri, 2002), 
functional site prediction, model generation (Simons et al., 
1997) and model evaluation (Wallner and Elofsson, 2007; 
Qiu et al., 2007). In this work, we have  explored  the machine 
learning models with  physical and chemical properties to predict 
the RMSD (Root Mean Square Deviation) of a modeled protein 
structure in the absence of its true native state. Physical and 
Chemical properties namely total empirical energy, secondary 
structure penalty, total surface area, pair number, residue length and 
Euclidean distance are used. There are total 1056 modelled decoys 
structures having 3078 native structures. The modelled structures are 
taken from protein structure prediction center (CASP-5 to CASP-10 
experiments), public decoys structures database (Public-Decoy, 
2010) and native structure from protein data bank (RCSB). ) the 
feature importance is determined by the Real Coded Genetic 
Algorithm (RCGA) .machine learning model shaving the features 
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and  names Decision Tree, random forest, Linear model and Neural 
Network for the prediction of RMSD protein structure. By the whole 
experiments, it is observed that random forest model outperforms 
the other machine learning approaches in prediction of RMSD. 
Further, K-fold cross validation is used to measure the robustness of 
the best predictive model. Finally, for the benchmarking of model 
correctness, the performance of best predictive model is compared 
with top-performing ProQ2 (Ray et al., 2012) . The benchmark 
method is  single model method. ProQ2 is based on Support Vector 
Machine .Rest of the paper is organized as follows. A brief overview 
of the considered features, data set, methodology, RCGA algorithm, 
and machine learning models are presented in Section 2. Model 
evaluation is presented in Section 3. Section 4 describes 
experiments, results and discussion. Finally, conclusion is presented 
in Section 5. 
 

2 FEATURES AND METHODS 
2.1 Data set and its features 
There are total 1056 modelled structures having 3078 native 
structures. The modelled structures are fetched from protein 
structure prediction center (CASP-5 to CASP-10 
experiments), public decoys structures database (Public-
Decoy, 2010) and native structure from protein data bank 
(RCSB). Table 1 describes the physical and the chemical 
properties used in this study. A sample of the data set is 
shown in Table 2. Table 3 shows the correlation between 
each feature. There is no correlation of energy with euclidean 
distance, pair number, residue length and area. There is high 
correlation between (i) euclidean distance and pair number, 
(ii) residue length and pair number, and (iii) residue length 
and area 

 

 

2.2 FeatureMeasurement 
We have explained  an overview of the physical and the 
chemical properties used in this research. 
2.2.1 Root Mean Square Deviation (RMSD)                    
The RMSD is calculated using the superposition between 
matched pairs of Cα in two protein sequences. This 
superposition is computed using the Kabsch rotation matrix 
(Betancourt and Skolnick, 2001). The RMSD is calculated as: 

 
where, di is the distance between matched pair i, N is the 
number of matched pairs. RMSD is calculated using the 
freely available program at (RMSD, 2011). 
2.2.2 Total surface area (Area) 
 Protein folding is done by various driving forces, which 
holds minimization of its total surface area. Degree of these 
external forces depends on the surface of protein exposed to 
the solvent, which convey the strong dependency of free 
energy on solvent accessible surface area (SASA) (Durham et 
al., 2009). SASA has been  used as one of the important 
properties to assess the quality of protein structures. 
Hydrophobic collapse is considered as a major factor in 
protein folding and this can be estimated as a loss of SASA of 
non-polar residues. Each amino acid shows a different 
affinity to be found on the surface of the protein based on the 
functional groups present in its side chain (Janin, 1979). 
Some questions arise with regard to the usage of SASA: (i) 
should it be the total area or is it the area of the non-polar 
residues, (ii) what is the standard fixed value of SASA for a 
native structure and (iii) is the rule of minimum area 
applicable to non-globular proteins. Here, total SASA have 
been calculated using Lee & Richards (Janin, 1979) method. 
2.2.3 Euclidean distance (ED)  
Spatial positioning of Cα atoms decides the overall 
conformation of a protein. Recently, neighborhood profiles of 
Cα atoms for each pair of residues have been characterized 
and observed to be invariant in 3618 native proteins 
suggesting certain geometrical constraints in their 
positioning (Mittal and Jayaram, 2011). The authors consider 
four aliphatic non polar residues Alanine (ALA), Valine 
(VAL), Leucine (LEU) and Isoleucine (ILE); collectively 
they formed 6 unique pairs among each other. Cumulative 
inter-atomic distance of their respective Cβ atoms were 
calculated for each residue pair. Euclidean distance is 
calculated by taking the cumulative difference of Cα and Cβ. 
Euclidean distance between two protein sequences p and q is 
given as: 

 
where, n is sequence length. 

Sonal Mishra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5398-5404

www.ijcsit.com 5399



2.2.4 Total empirical energy (Energy)   
  The total empirical energy is the absolute sum of 
electrostatic force, van der Waals force and hydrophobic 
force (Arora and Jayaram, 1997; Naranget al., 2006). 
Molecular dynamics simulation package AMBER12 (G¨otz et 
al., 2012) is used to compute total empirical energy. 
 It is computed as given below: 
 

 

 2.2.5 Secondary Structure penalty (SS) Secondary structure 
prediction has reached to 82% accuracy (Sen et al., 2005) 
over the last few years. Therefore deviation from ideal 
predicted secondary structures can be used as a measure to 
quantify the quality of a structure. Secondary structure 
penalty is measured from the secondary structure sequence. It 
is computed as the absolute difference of the STRIDE 
(Frishman and Argos, 1995) and the PSIPRED (Jones, 1999) 
scores. STRIDE is used to assign three secondary structure 
classes, i.e., helix, sheet and coil to each residue in the protein 
models based on coordinates. PSIPRED is used to predict the 
probability for the same secondary structure classes. 
 

        
where, P is the protein sequence ; Sstride(P) and 
Spsipred(P)are the STRIDE and PSIPRED scores 
respectively;  Shelix(P), Ssheet(P) and Scoil(P) are the 
STRIDE score for helix, sheet and coil of protein sequence P 
respectively; F1(P) is the predicted probability from 
PSIPRED for the secondary structure of the central residue in 
the sequence window; F2(P) is the correspondence 
between predicted and actual secondary structure over a 21-
residue window; F3(P) is the secondary structure assigned by 
STRIDE ,binary encoded into three classes over a 5-residue 
window. 
 

 
 

 
 

  Pair number is the total number of aliphatic hydrophobic 
residue pairs in the protein structure and it is calculated by 
counting the total number of pairs between the Cβ. 
carbons in the protein structure. 
2.2.7 Residue Length (RL)   
Residue length is the total number of Cα carbons in the 
protein structure. 
 
2.3 Methodology 
The methodology is explained in Fig. 2. In the very previous 
step, the modelled protein structures are taken from protein 
structure prediction center (CASP-5 to CASP-10 
experiments), public decoys database (Public-Decoy, 2010) 
and native structure from protein data bank (RCSB). The 
feature measurement, as discussed in section 2.2, of protein 
structures is carried out in second step.in the next step The 
removal of duplicates and missing value entries from dataset 
were carried out . There are total 1056 decoys structures 
having 3078 native structures. In the forth step, the Real 
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Coded Genetic Algorithm (RCGA) is used to measure the 
importance of each feature. Feature selection makes the 
prediction of model efficient and accurate. In the last step, the 
four machine learning approaches (refer, Table 5) were 
trained and tested on the data set with their default 
parameters. Fig. 3 describes the prediction model. Finally, the 
evaluation of the model is done on Root Mean Square Error 
(RMSE), Coefficient of Determination (R2), Correlation and 
Accuracy and K-fold cross validation is used to measure 
robustness of the best predictive model. 
 
2.4 Real Coded Genetic Algorithms (RCGA) 
Real Coded Genetic Algorithms (RCGA) is one of the most 
popular optimization method among  the evolutionary 
algorithm (EAS) .it’s a population based stochastic search 
approach and in general can be regarded as a searching 
method from multiple positions and directions .It is used for 
the biological evolution in nature selection and it consists 
three operations – reproductions, crossover and mutation  
Multiple good solution are carried out by the reproduction 
operations. The crossover operation blends genetic 
information operation between solution to generate new 
candidate solution .And the mutation operation convergence 
to a suboptimum solutions . 
Due to it’s good results in solving optimization problems ,it 
has been  widely applied in science, economics and 
engineering fields .  
The crossover operation is considered as important in the 
evolutionary algorithm as it guides the search by producing 
new considered solution. 
In past , the performance of RGCA has been developed by 
many difference kinds of crossover operators.From technical 
point of view, the crossover operators developed are mainly 
on the base of the line segment connection and distribution 
analysis of parent solutions, e.g., mean-centric and parent 
centric approaches . As observed in previous studies  
however, these featured approaches might bring out some 
problems.  We searched firstly, there could be some areas 
where the crossover operation cannot generate offspring as 
the size of population so it’s  relatively small as compared to 
the whole search space, and/or the distribution of the initial 
given population does not uniformly scatter over the search 
space. Secondly, these crossover operators do not work well 
on the problems when the optimum is located at or near the 
boundaries of the search space Moreover, due to the inherent 
nonlinearities, complex constraints and apparent interaction 
among decision variables, most RCGAs can unavoidably 
experience the problem of excessive complexity in 
implementation and the difficulties in locating true global 
optimal for some practical applications. 
2.4.1 Feature Importance using RCGA 
 The RCGA is used to find the importance of each features. It 
defines the weight to each feature according to the objective 
function defined in eq. (3). As consider  crossover rate (CR) 
and mutation rate (MR) are set to be 0.9 and 0.01 

 
Respectively.Uniform crossover operator is used for 
crossover and arithmetic mutation (adding or subtracting a 
small number) is used as mutation operator. After five 
different runs, the weight obtained for each feature is 
described in Table 4. We can see in the above table the 
average weight of energy is highest and area is lowest that 
also signifies the importance of each feature in the dataset. As 
the weight given to each feature is significant so all the 
features are selected for the experiment 

 
where, T is the total number of instances in training data set, 
R is the RMSD, P is physical and chemical properties, n is 
the number of properties (6 in this case) and w is the weight 
given to each feature defined in the range of [0,1]. 
 
2.4.2 Machine learning models 
In this work, we used four machine learning models (refer, 
Table 5) for prediction of RMSD of protein structure. The 
models are available in R open source software. R is licensed 
under GNU GPL. In precisely the models is presented below: 
1.  Decision Trees: This model is an extension of C5.0 

classification algorithms described by Quinlan . 
2.  Random forest: It is based on a forest of trees using 

random inputs . 
3.  Linear Models: It uses linear models to carry out 

regression, single stratum analysis of variance and 
analysis of covariance . 

4.  Neural Network: Training of neural networks using back 
propagation, resilient back-propagation with or without 
weight or the modified globally convergent version . 

 
 

3 MODEL EVALUATION 
We have many  ways to measure performance of the 
prediction, where some are more suitable than the others 
depending on the application considered. A brief discussion 
on the performance measures is explained below. The 
formula used for all the machine learning models is given by: 
 
RMSD _ Area + ED + Energy + SS + RL + PN 
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Table 5. Machine learning models used 

 
3.1 Root Mean Squared Error 
RMSE is a popular formula to measure the error rate of a 
model. However, it can only be compared between models 
whose errors are measured in the same units. It is calculated 
as follows: 

 
Where ,a is actual value, p is predicted value and n is the total 
number of instances. 
 
3.2 Coefficient of Determination (R2) 
The coefficient of determination (R2) summarizes the 
explanatory power of the model and is computed from the 
sums-of-squares terms. 

 

 

 
3.3 Accuracy 
The accuracy is calculated as percentage deviation of 
predicted RMSD with actual RMSD. 

 
Where , a is actual value, p is predicted value and n is the 
total number of instances. 
 
3.4 Correlation 
Correlation describes the statistical relationships between 
actual and predicted values. It is defined as follows: 

 
where, x is the actual value, y is the predicted value, ¯x is the 
mean of the all actual values, ¯y is the mean of the all 

predicted values and n is the number of instances. Correlation 
lies in the range of [0,1] and is considered to be good if its 
value tends towards 1. 
 
3.5 K-Fold Cross Validation 
K-fold cross validation is used to measure accuracy of the 
predictive model. The original sample is randomly partitioned 
into k equal size subsamples. Of the k subsamples, a single 
subsample is retained 
as the validation data for testing the model and the remaining 
k-1 subsamples are used as training data. The cross-validation 
process is then repeated k times (the folds) with each of the k 
subsamples 
used exactly once as the validation data. Further, the k results 
from the folds are can be averaged to produce a single 
estimation. The advantage of this model over repeated 
random sub-sampling is 
that all observations are used for both training and validation, 
and each observation is used for validation exactly once. 
Here, 10-fold (k=10) cross validation is used to measure the 
robustness of the best 
selected model. 3.6 Benchmark of local model correctness 
For the benchmarking of model correctness performance of 
the random forest model is compared with top-performing 
ProQ2 (Ray et al., 2012) . Both the benchmark methods are 
single-model method. ProQ2 is based on Support Vector 
Machine. 
 
3.6 Benchmark of local model correctness 
For the benchmarking of model correctness performance of 
the random forest model is compared with top-performing 
ProQ2 (Ray et al., 2012) . The benchmark method is single-
model method. ProQ2 is based on Support Vector Machine. 
 

4 RESULTS 
In this section, we observe the prediction results of all the 
four machine learning models on the training and testing 
dataset. The machine learning models might be suffer from 
over fitting due to the possibility of criterion used for training 
the model is not the same as the criterion used to judge the 
efficacy of a model. Here, to avoid the over fitting , all four 
machine learning models are run on their default parameters 
and the distribution of data in training and testing set are 70% 
and 30% respectively for all the models. 
Table 6 shows a comparative performance of all the models 
in the prediction of RMSD on RMSE, Correlation, R2 and 
Accuracy. The performance results show that the random 
forest model outperforms 
the machine learning models in the prediction of RMSD of 
the protein structure in the absence of its true native state. 
 The RMSE is used to measure the differences between 
values predicted by a model and the values actually observed. 
The RMSE is calculated using equation 4. The random forest 
have the lowest 
RMSE of 0.26 in the training dataset and 0.48 in the testing 
dataset. The correlation describe the statistical relationships 
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between actual and predicted values and it is calculated using 
eq. (7). The 
random forest have the highest correlation of 0.98 in the 
training dataset and 0.90 in the testing dataset. 
R2 summarizes the explanatory power of the model between 
the prediction for each observation and the population mean. 
The R2 is calculated using eq. (5). The random forest have 
the highest R2 of 
Table 6. Performance comparison of all four models on 
training and testing data set. 

 

 
• Actual vs Prediction RMSD for training dataset     
•  Actual vs Prediction RMSD for testing dataset 

 
Fig. 4: Scatter plot of Actual vs Predicted values of RMSD on 
training and testing dataset using random forest 
 
0.96 of in the training dataset and 0.82 in the testing dataset. 
Fig. 4 shows R2 in training and testing dataset. Accuracy is 
the degree of consistency of a calculated or measured 
quantity to its true (actual) value, where as precision is an 
experiment value, which measures the reliability of an 
experiment. 
The accuracy is calculated using eq. (6) with acceptable error 
of ±2. The random forest  have the highest accuracy of 
99.89% in the training dataset and 97.02% in the testing 
dataset. Here, k-fold (k=10) cross validation is used to 
measure the robustness of the random forest. Fig. 5 shows the 
RMSE, correlation, R2 and accuracy for 10 folds in 
prediction of RMSD .Cross validation results show a uniform 
performance in all model evaluation parameters. Fig. 4 shows 
the scatter plot between  actual and  predicted RMSD for 
training and testing dataset using random forest. To prove the 
effectiveness of the predictive model, the performance of 
random forest is compared with top-performing ProQ2  and 
the performance is found to be quite impressive (refer, Table 
7). 

 
Table 7. Performance validation on the existing decoys sets in the 

prediction of RMSD using random forest. 

 
(c) Correlation                        (d) Accuracy 

 
Fig. 5: 10-fold cross validation of RMSE, R2, Correlation and 
Accuracy on training and testing data set in the prediction of 

RMSD using random forest. 
 

5 CONCLUSION 
In this work, we explore four machine learning methods with 
six physical and chemical properties to predict the RMSD of 
protein structure in the absence of its true native state. The 
exact  quality of a model is expressed in terms of how  the 
model scoring   the expected values from a given set of high 
resolution experimental structures. Here, the methods 
machine learning don’t include any other information from 
other models or alternative template structures. All the 
models are evaluated on RMSE, correlation, R2 and 
accuracy. By the experiments, it is found that random forest 
method outperforms the machine learning methods in the 
prediction of RMSD. The K-fold cross validation is used to 
measure the robustness of random forest. Finally, for the 
benchmarking of model correctness, the performance of 
random forest model is compared with top-performing ProQ2 
.  the benchmark method is single-model method and it is 
found that the random forest prediction accuracy is quite 
impressive. We believe that the more physical and chemical 
properties and other computational methods can be combined 
with machine learning methods produces even better results. 
The data set used in the study is available at http://bit.ly/PSP-
ML 
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